
SEW21GSS.DOC 1 February 25, 1997

Evolving the Reuse Process at the Flight Dynamics Division
(FDD) Goddard Space Flight Center

S. Condon,1 C. Seaman,2 V. Basili,2 S. Kraft,3 J. Kontio,2 Y. Kim2

1 Computer Sciences Corporation, Lanham-Seabrook, Maryland
2 Computer Sciences Dept., University of Maryland, College Park, Maryland
3 Goddard Space Flight Center, Greenbelt, Maryland

Abstract
This paper presents the interim results from the
Software Engineering Laboratory's (SEL) Reuse
Study. The team conducting this study has,
over the past few months, been studying the
Generalized Support Software (GSS) domain
asset library and architecture, and the various
processes associated with it. In particular, we
have characterized the process used to configure
GSS-based attitude ground support systems
(AGSS) to support satellite missions at NASA's
Goddard Space Flight Center. To do this, we
built detailed models of the tasks involved, the
people who perform these tasks, and the
interdependencies and information flows among
these people. These models were based on
information gleaned from numerous interviews
with people involved in this process at various
levels. We also analyzed effort data in order to
determine the cost savings in moving from
actual development of AGSSs to support each
mission (which was necessary before GSS was
available) to configuring AGSS software from
the domain asset library.

While characterizing the GSS process, we
became aware of several interesting factors
which affect the successful continued use of
GSS. Many of these issues fall under the
subject of evolving technologies, which were
not available at the inception of GSS, but are
now. Some of these technologies could be
incorporated into the GSS process, thus making
the whole asset library more usable. Other
technologies are being considered as an
alternative to the GSS process altogether. In
this paper, we outline some of issues we will be
considering in our continued study of GSS and
the impact of evolving technologies.

1. Introduction
Since 1985 the Software Engineering
Laboratory (SEL) has been evolving methods of
software reuse through a series of studies,
experiments, pilot projects, and full-fledged
development projects at the Flight Dynamics
Division (FDD) of NASA’s Goddard Space
Flight Center (GSFC). The SEL adopted Ada83
for these experiments and projects at a time
when C++ was still relatively unknown. From
this Ada work, the SEL determined that object-
oriented (O-O) technology was providing the
best reuse benefits within the FDD.

Around 1989-90 the Ada/O-O experience
merged with an FDD-wide initiative to develop
a "configurable" flight dynamics attitude
support system. The result evolved into the
Generalized Support Software (GSS) Domain
Engineering Process. By means of this process,
the FDD has shifted from developing
applications to configuring applications out of
generalized, reusable assets. The term "assets"
encompasses design specifications, code
components, tools, and standards. To date, eight
applications, supporting two NASA satellite
missions, have been configured from the GSS
asset library and delivered to acceptance testing.

A SEL Reuse Study team was tasked to analyze
the GSS process, determine the cost and quality
of the resulting systems, document and evaluate
its strengths and weaknesses, and propose
modifications to it. This paper presents the
preliminary results of this SEL study.

The paper examines several relevant cost issues.
It compares the cost of investment in the GSS
asset library to the investment in previous FDD
reuse libraries. It compares the deployment
costs (design, configuration and testing) of
GSS-based applications to the development

SEW21GSS.DOC 2 February 25, 1997

costs of previous FDD applications and
contrasts the resulting cost savings with the
investment cost in the GSS asset library. The
paper also demonstrates that the GSS process
has resulted in a significant decrease in the time
required to field a new application.

In addition to analyzing software metrics such
as effort and cycle time, the reuse study team
interviewed numerous domain analysts, mission
analysts, component engineers, application
configurers, and application testers who have
been involved in the GSS process. The study
team adopted Yu's Actor-Dependency (AD)
formalism to model the dependence of various
GSS process actors on other actors and
resources. In order to further understand more
complex actors in this process, the team applied
Yu's Agent-Role-Position (ARP) formalism to
make explicit the many different roles one actor
may play in the process. (Reference 1)

2. History of FDD Reuse

2.1 Environment of the FDD & SEL
Over the past decade, the FDD of GSFC has
usually consisted of about 100 civil servants
supported by 300-400 CSC and subcontractor
personnel. (In the last two years, NASA-wide
reductions in the workforce have reduced these
numbers somewhat.) Of these personnel, about
40% are software developers or testers. Another
40% are operations personnel or FDD analysts.
The analysts are the experts in orbital
mechanics, mathematics, or other technical
disciplines who write the software requirements
for FDD applications.

The mission of the FDD is to build, deploy, and
maintain space ground systems for NASA
science missions, with emphasis on earth
orbiting satellites. Flight dynamics applications
are essentially scientific data processing
systems: some are institutional (i.e., they
support multiple missions) and others are
mission-specific (i.e., a new one needs to be
built for each new spacecraft). Each FDD
application supports some aspect of spacecraft
flight dynamics via one of three domains: (1)
attitude determination,4 (2) mission and

4 "Attitude" means the spatial orientation of a
spacecraft

maneuver planning, or (3) orbit and navigation.
This paper focuses on the evolution of software
reuse within the attitude determination domain
of the FDD.

The SEL is a virtual organization which consists
of civil servants from the software development
group of the FDD, CSC contractors supporting
them, and representatives from the Computer
Science Department of the University of
Maryland at College Park. The SEL has been in
existence for over 20 years, during which time it
has guided, studied, documented, and nurtured
software experimentation within the FDD.
(Reference 2)

2.2 History of S/W Reuse at the FDD &
SEL Prior to GSS
During the last dozen years, the SEL and the
FDD have focused in particular on how to
increase software reuse levels, with the
expectation that this would reduce cost and
cycle time. At the beginning of this
experimentation, the FDD was developing
software applications in a FORTRAN
mainframe environment, achieving a modest
level of reuse of very low level utilities.
Through a series of studies, experiments, pilot
projects, and full-fledged development projects,
the SEL and FDD began evolving methods of
software reuse. Efforts were focused in the
attitude determination domain, whose class of
mission-specific applications would benefit
most from increases in software reuse.

The SEL learned a great deal about using O-O
and Ada generics for one particular type of
application, a simulation test tool whose
development was transferred from the IBM
mainframe to an Ada-friendly platform, the
DEC VAX. From these experiments and
mission projects, the SEL determined that the
use of object-oriented principles, rather than the
Ada language itself, was providing the primary
reuse benefits within the FDD. (Reference 3)

The bulk of the FDD's mission-specific
applications, the AGSSs, however, continued to
be developed in FORTRAN on the IBM
mainframe. The SEL was unable to transfer its
Ada practices to the mainframe because
adequate Ada tools for the mainframe
environment were lacking. In lieu of this, the
FDD applied some domain engineering

SEW21GSS.DOC 3 February 25, 1997

concepts to create two FORTRAN reuse
libraries for developing AGSSs. One library
was developed to support AGSSs for non-
spinning satellites, and the other for spinning
satellites. The majority of satellites supported
by the FDD, traditionally, are non-spinning.
The FDD had some success with the FORTRAN
reuse libraries, but the results were not truly
“generalized” and the libraries grew with each
new mission and became cumbersome to
maintain. Nonetheless, these were all valuable
experiences on which the FDD was able to
build.

2.3 Motivation, Goals and Definition of
GSS
Concurrent with the SEL-sponsored
experiments in O-O, was a division-wide FDD
initiative to examine the possibility of
generalizing all flight dynamics software so that
in future all applications would be configured
rather than developed. The members of this
team wrestled with what it means to "configure"
an application, as opposed to "develop" an
application, and came to the conclusion that it
was only possible if an FDD reuse library were
built around objects. This decision made the O-
O experiments all the more important. Around
1989-90 the Ada/O-O experience and the search
for "configurable" flight dynamics software
applications merged and evolved into what was
to become the Generalized Support Software
(GSS) Domain Engineering Process.

The GSS process relies upon the GSS Asset
Library, a library of generalized, configurable
application components developed by the FDD
with an object-oriented domain engineering
approach. GSS specifications adhere to a
standardized approach for specifying object-
oriented classes. This standardization allows the
use of standard rules for the implementation of
each class, including a generic detailed design
for each class and a system architecture that
allows classes to be configured into a program
that communicates with the FDD's User
Interface and Executive (UIX). By means of the
GSS process, the FDD has shifted from
developing applications to configuring
applications out of generalized, reusable assets.
The term "assets" encompasses design
specifications, code components, tools, and
standards.

In 1992 the design of the GSS asset library got
into full swing, followed in early 1993 by
coding of the assets, which were implemented
in the Ada83 language and resided on a DEC
Alpha workstation. In February 1995 work
began in earnest on configuring the first
application from this asset library. To date,
eight applications, supporting two NASA
satellite missions, have been configured from
the GSS asset library and delivered to
acceptance testing. These applications run on
HP or Sun workstations.

2.4 GSS as an Experience Factory
In order to carry out process improvements
within the FDD, the SEL functions as an
experience factory in relation to the project

organization. The project organization consists
of FDD mission analysts, application
developers, and application testers. The mission
analysts are the FDD personnel whose training
and experience in orbital mechanics and
mathematics qualifies them to write the
requirements for FDD applications. As the
project organization goes about its business of
developing applications, the experience factory
collects metrics and lessons learned from them.
The experience factory staff stores these data in
a database, analyzes the data, suggests and
conducts additional experiments, and finally
packages these distilled project organization
experiences into recommended best practices,
estimation models, and software development
training courses, which spread these process

Application
Developers

Experience Factory:
Capture, Analyze, and Package

Experiences

Project
Organization:

Develop
Applications

Mission
Analysts

Application
Testers

Data Base
Personnel

Researchers

Packagers

metrics &
lessons
learned

best practices,
est. models,

training

Application

Figure 1: Traditional SEL Experience Factory

SEW21GSS.DOC 4 February 25, 1997

improvements throughout the FDD project
organization. Figure 1 depicts this traditional
relationship between the project organization
and the experience factory. A heavy dashed line
separates the two groups. The light dotted line
separating the mission analysts from the
software developers on the project organization
side reflects the fact that traditionally the SEL
has not collected metrics from mission analysts
in the FDD.

With the development of the GSS Asset Library,
the boundaries and scope of the experience
factory appear to have expanded. New
personnel, formerly part of the project
organization, are now fulfilling experience-
factory-type roles. Instead of supplying only
process improvements to the FDD project
organization, however, these people are also
supplying product improvements to the FDD in
the form of generalized library assets.

Figure 2 depicts this new dimension to the
experience factory concept at the FDD. A few
former mission analysts have become domain
analysts. They have designed the GSS
architecture and written the GSS functional
specifications for the library assets. At the same
time several applications developers have
become component engineers and have coded
the classes and categories defined by the GSS
functional specs. With these assets developed,
the project organization then follows a
streamlined process for application deployment.
Under the new deployment process, a mission

analyst must write the GSS mission
specification that stipulates which GSS classes
& categories are required for the application,
which of the many parameters associated with
these assets are necessary for this application,
and what values need to be assigned to these
parameters. This mission specification is
passed to an application configurer—
application developers are no longer needed—
and the configurer then instantiates the
specified objects from the generalized classes
in the asset library and links them to form the
desired application. The application testers
then test the application and turn it over to
operations.

3. Characterization of the
GSS Application
Deployment Process

A SEL Reuse Study team was tasked to analyze
the GSS configuration process, determine the
cost and quality of the resulting application
systems, document and evaluate the strengths
and weaknesses of the process, and propose
improvements to it. In this section, we describe
the preliminary results of this study of the GSS
configuration, or application deployment,
process, which is used to define, configure, and
test an attitude support software application.
Below, we describe the methods we used to
gather and analyze this process information. In
the sections which follow, we first characterize
the configuration process quantitatively with
respect to its cost, schedule, and the errors in the
resulting applications. We then present the
process graphically and analyze its inner
workings.

To model the GSS configuration process, the
team began by studying documentation and
holding informal discussions with managers,
task leaders, and a few key technical personnel.
At the same time we began to analyze SEL data
on effort, estimates, schedules, and software
changes related to the GSS asset library and to
the software applications that were configured
from it. As this metrics data analysis was
proceeding, we conducted numerous detailed,
structured interviews with people playing a
variety of roles related to GSS in order to obtain
information of sufficient detail to model the
configuration process.

Application
Developers
Configurers

Experience Factory:
Asset Development

Project
Organization:
Application
Deployment

GSS Asset Library
Functional
Specifications

Class & Category Code

Domain
Analysts

Component
Engineers

Mission
Analysts

Application
TestersConfigured

Application

Mission
Specs

Figure 2. GSS Component Development and
 Application Deployment Process

SEW21GSS.DOC 5 February 25, 1997

3.1 Analysis of Metrics Data

3.1.1 GSS Costs
There are two relevant costs to consider
when evaluating the GSS project. One is
the cost associated with configuring
applications from GSS components.
Figure 3 compares the cost of deploying
GSS-based applications to costs in the
previous two eras, and demonstrates that
GSS-based applications can be deployed
for as low as 10% of the cost required
during the FORTRAN/Ada reuse era.

Prior to 1985 it cost 58,000 hours to
develop and test the attitude support
applications for a typical FDD mission.
Later, when the FDD was using Ada reuse
libraries to develop simulators and
FORTRAN reuse libraries to develop
AGSSs, this cost dropped to 30,000 hours
per mission. In both eras the development
of the non-real-time system and the
utilities required the most effort.

When it came time to support the first
mission with the GSS library, the simulator
was configured first, and the real-time
portion of the AGSS was configured
second. In each case, the GSS asset library
was still undergoing redesign and growth.
The configurers were also evolving the
configuration process. Consequently, the
cost of deploying these first two

applications was more than it had
been in the FORTRAN/Ada reuse
era. When the time came to
configure the non-real-time portion
of the AGSS and the utilities, the
asset library and configuration
process had stabilized. As a result,
this cost only a fraction of the
typical cost from the previous era.
With the second GSS-supported
mission, we see even more dramatic
savings. The simulator and the
non-real-time system plus utilities
each cost on the order of 10% of
their cost from the FORTRAN/Ada
reuse era. No real-time system was
required for this application.

(no R-T
system)

58

0

10

20

30

40

50

60

Pre-1985
Reuse

Reuse
Era

1st GSS
Mission

2nd GSS
Mission

Non-Real-
Time System
& Utilities
Real-Time
System

Simulator

36
30

2.5

a TP costs removed from application costs for first 2 eras; TPs unecessary in GSS era.
b Library maintenance costs included in 2nd era; GSS mission costs include total of 10 Khr of
GSS overhead (library maintenance, etc.)

FORTRAN
/Ada

E
ff

o
rt

 t
o

 Im
p

le
m

en
t

&
 T

es
t

(T
h

o
u

sa
n

d
 o

f
H

o
u

rs
) a,

b

Figure 3: Reduced Deployment Costs
Due to GSS Process

0

20

40

60

80

100

120

FORTRAN Ada GSS
Reuse
Library

Req'ts
Dev. &
Test

?

95

36

40
?

15

1985-1993 Era
Reuse Libraries

E
ff

o
rt

 t
o

 C
re

at
e

R
eu

se
 L

ib
ra

ry
(T

h
o

u
sa

n
d

 o
f

H
o

u
rs

)

Figure 4: Library Investment Costs in Two Eras

Duration of AGSS Development

0

20

40

60

80

100

120

140

Max. Ave. Min.
1st

Mission
2nd

Mission

D
u

ra
ti

o
n

(d
es

ig
n

-a
cc

ep
ta

n
ce

 t
es

t)

in
 w

ee
ks

FORTRAN/Ada Reuse Era GSS Era

Note: GSS era estimates assume project completions by 1/30/97

136

101

61

93

48

Figure 5: GSS Reduces Deployment Cycle Time

SEW21GSS.DOC 6 February 25, 1997

The other important cost to remember is the
initial cost of building the GSS library itself.
These costs are shown in Figure 4 alongside the
costs to develop and test the FORTRAN and
Ada reuse libraries from the previous era. For
the GSS asset library we know that the domain
analysts spent 36,000 hours defining the
requirements and the logical design in the GSS
functional specifications. The component
engineers spent 40,000 hours creating the
physical design and implementing, inspecting,
and unit testing the generalized Ada83 classes
and categories. We know the effort required to
develop and test the FORTRAN and Ada reuse
libraries, but we do not know the hours spent on
requirements, since traditionally the SEL does
not collect metrics from FDD mission analysts.
Even so, we can see that the GSS library was
developed for less than the combined cost of
developing the FORTRAN and Ada reuse
libraries, which it replaced.

Figures 3 and 4 further demonstrate that if the
FDD continues to deploy GSS-based
applications for 10% of the cost of the
preceding era, the FDD will recoup its entire
library investment cost of 76,000 hours by the
fourth GSS supported mission.

3.1.2 Application Deployment Cycle Time
The GSS process has resulted not only in a great
reduction in the cost of deploying an
application, but also in a significant reduction in
the cycle time required to deploy an application.
Figure 5 reveals that the time to field an AGSS
during the FORTRAN reuse era ranged from 61
to 136 weeks, with an average of 101 weeks.
The time required to design, configure, and test
the applications for the first GSS-supported
mission was a little less than the average for the
preceding era. The second project, however,
was completed in less than half of the average
cycle time for the FORTRAN/Ada era. In fact,
it took less time than any project in the previous
era. It seems likely that project duration can be
further reduced with this reuse process.

3.2 Process Diagrams
After gaining an initial understanding of the
GSS environment and how it is used, the team
developed a detailed interview guide and
conducted structured interviews with most of
the designers, developers, configurers, and

testers involved in the GSS processes. Once a
sufficient body of information had been
collected, we began to organize it by modeling
the relevant processes, in particular the GSS
configuration process.

We chose to use Yu's Actor-Dependency (AD)
model to portray the interactions, roles, and
dependencies between the actors in the GSS
processes. Figure 6 is an AD model reflecting
the same level of detail as depicted in Figure 2.
The AD diagram reflects how each team
depends on other teams. The types of
dependencies are

• resource dependencies (depicted by a
rectangle), which indicate that the depender
relies on some artifact, document, or
information from the dependee;

• task dependencies (depicted by a hexagon),
which indicate that the depender relies on
the dependee to complete some defined set
of steps. The dependee may or may not be
aware of the goals of this task;

• goal dependencies (depicted by an oval),
which indicate that the depender relies on
the dependee to achieve some well-defined
goal. The depender has a great deal of
freedom to determine how to reach that
goal; and

• soft goal dependencies (depicted by a
distorted oval, i.e., a "peanut" shape), which
indicate that the depender relies on the
dependee to achieve some goal which is not
well-defined, i.e. the depender and
dependee may not agree on, and must
negotiate, exactly how the goal is to be
satisfied.

The following AD diagrams focus more on the
GSS application configuration process and show
the relevant roles and dependencies at a lower
level of detail.

Figure 7 expands the complex social actors of
Figure 6 into their substructure of agents, roles,
and positions. Agents are actual, physical
people and groups of people that actors
represent. Roles indicate what parts of the
process an actor is involved in. Positions are
the organizational titles and jobs that an actor
holds. Positions generally “cover” one or more
roles, while roles are “played” by an agent, who
also “fills” one or more positions. In Figure 7,

SEW21GSS.DOC 7 February 25, 1997

only some of the relevant dependencies are
shown and (for the most part) are not identified
by type in order to simplify the diagram.

Figure 8 shows, at a high level, the sequences of
tasks that must be completed in order to
configure a GSS application, and the inputs and

outputs of those tasks. Tasks are represented as
ovals and artifacts (inputs and outputs) as
rectangles. Many of the tasks refer to task
dependencies in Figure 6.

SEW21GSS.DOC 8 February 25, 1997

C
la

ss
ge

n

U
se

r's
G

ui
de

G
S

S
Fu

nc
tio

na
l

S
pe

ci
fic

at
io

n

M
is

si
on

S
pe

ci
fic

at
io

n

G
S

S
C

la
ss

es
,

C
at

eg
or

ie
s

U
IX

U
IX

 p
re

-
pr

oc
es

so
r

U
IX

pa
ra

m
ed

ito
r

G
S

S
C

O
N

re
or

de
r

re
se

qu
en

ce

w
rit

e
_a

pp
_

in
t

A
da

co
m

pi
le

r

fil
es lis
t

U
IX

lib
ra

ry

lin
ke

r st
rip

_
pa

rs
de

le
te

_p
ar

s
ca

t_
pa

rs

cr
ea

te
di

sp
la

y
D

B

cr
ea

te
co

nf
ig

.c
fg

cr
ea

te
lo

ad
m

od
ul

e cr
ea

te
op

er
'l

pa
ra

-
m

et
er

 D
B

cr
ea

te
co

nt
ro

l p
ar

a-
m

et
er

 D
B

.o
ve

rr
id

e
fil

e ru
n

sc
rip

t

m
es

sa
ge

D
B in

pu
t

fil
es

co
nf

ig
.c

fg
lo

ad
m

od
ul

e
op

er
at

io
na

l
pa

ra
m

et
er

 D
B

co
nt

ro
l

pa
ra

m
et

er
 D

B
di

sp
la

y
D

B

m
is

si
on

ex
pe

rt
M

A

D
A

C
E

us
er

A
T

A
C

pr
ov

id
e

m
is

si
on

 in
fo

.

de
ci

de
 m

is
si

on
sp

ec
ifi

c
co

de
is

su
es

pr
ov

id
e

G
S

S
 s

pe
c

 a
ns

w
er

s

pr
ov

id
e

m
is

si
on

 s
pe

c

 a

ns
w

er
s

w
rit

e

sp
ec

 m
od

s
pr

ov
id

e
G

S
S

 c
od

e

 a

ns
w

er
s

ge
ne

ra
te

ge
ne

ra
liz

ed
co

de

Te
st

R
ep

or
ts

U
se

r's
 G

ui
de

 o

n
tim

e

A
ct

or

A
C

 =
 A

pp
lic

at
io

n

C
on

fig
ur

er
A

T
=

A
pp

lic
at

io
n

Te

st
er

C
E

 =
 C

om
po

ne
nt

E

ng
in

ee
r

D
A

 =
 D

om
ai

n
A

na
ly

st
M

A
 =

 M
is

si
on

 A
na

ly
st

L
E

G
E

N
D

:

R
es

ou
rc

e

Ta
sk

S
of

t G
oa

l

D
ep

en
d

en
ci

es
:

G
oa

l

D
ep

en
d

er
D

ep
en

d
ee

he
lp

 ru
nn

in
g

 a

pp
lic

at
io

n

pr
ov

id
e

co
m

pl
et

e
m

is
si

on

sp
ec

Figure 6. Actor-Dependency (AD) Model of GSS Application Deployment Process

SEW21GSS.DOC 9 February 25, 1997

C
E

po
si

tio
n

de
ve

lo
p

co
de

st
ds

de
ve

lo
p

de
si

gn
st

ds

di
sc

us
sp

ec
m

od
s

de
ve

lo
p

co
de

ge
ne

ra
to

r

pr
od

uc
e

cl
as

se
s

w
rit

e
co

de
in

sp
ec

t
co

de

m
od

ify
co

de

ru
n

cl
as

sg
en

pr
ep

ar
e

cl
as

sg
en

in
pu

t

an
sw

er
co

de
qu

es
tio

ns

w
rit

e
C

R
Fs

st
ud

y
G

S
S

sp
ec

s

M
ar

k
N

ic
ho

ls
on

P
os

iti
on

A
ge

nt

R
ol

e

P
os

iti
on

C
ov

er
ag

e

A
ct

or

R
es

ou
rc

e

A
C

 =
 A

pp
lic

at
io

n

C
on

fig
ur

er
A

T
=

A
pp

lic
at

io
n

Te

st
er

C
E

=
C

om
po

ne
nt

E

ng
in

ee
r

D
A

 =
 D

om
ai

n
A

na
ly

st
M

A
=

M
is

si
on

 A
na

ly
st

L
E

G
E

N
D

:
A

ge
nt

s,
 ro

le
s,

 a
nd

 p
os

iti
on

s
de

pi
ct

 th
e

in

te
rn

al
 s

tru
ct

ur
e

of
 c

om
pl

ex
 a

ct
or

s

A
T

po
si

tio
nco

nd
uc

t
te

st

w
rit

e
te

st
pl

an

ev
al

ua
te

te
st

re
su

lts

st
ud

y
us

er
's

gu
id

eco
nf

er
w

ith A
C

A
le

x
N

gu
ye

n

st
ud

y
m

is
si

on
sp

ec

C
la

ss
ge

n

U
se

r's
G

ui
de

G
S

S
Fu

nc
tio

na
l

S
pe

ci
fic

at
io

n

M
is

si
on

S
pe

ci
fic

at
io

n

G
S

S
C

la
ss

es
,

C
at

eg
or

ie
s

Jo
na

th
an

G
lic

km
an

Ji
m

K
as

t

P
at

C
ro

us
e

D
av

e
Tr

ac
ew

el
l

M
is

si
on

E
xp

er
ts

M
A

po
si

tio
n

w
rit

e
m

is
si

on
sp

ec

sp
ec

ify
ne

ed
ed

ap
pl

'n
s

sp
ec

ify
ne

ed
ed

cl
as

se
s

sp
ec

ify
pa

ra
m

et
er

va
lu

es
de

fin
e

di
sp

la
ys

&
 re

po
rtsre
vi

se
m

is
si

on
sp

ec

st
ud

y
S

/C
re

q'
ts

an
sw

er
M

. s
pe

c
qu

es
t'n

s

de
fin

e
O

P
S

co
nc

ep
t

de
fin

e
S

/W
re

q'
ts

le
ar

n
ab

ou
t

m
is

si
on

st
ud

y
G

S
S

sp
ec

id
en

tif
y

m
is

si
ng

fu
nc

tio
na

lit
y

M
ik

e
La

m
be

rts
on

co
nf

er
w

ith
 m

is
si

on
ex

pe
rt

D
A

po
si

tio
n

de
fin

e
do

m
ai

n
&

 s

ub
do

m
ai

ns

de
fin

e
ar

ch
.&

 s
pe

c.
st

ds
.

w
rit

e
G

S
S

sp
ec

s

de
fin

e
ca

te
go

rie
s

&
 c

la
ss

es

w
rit

e
sp

ec
m

od
s

de
ci

de
m

is
si

on
sp

ec
ifi

c
co

de

is
ue

s

an
sw

er
G

S
S

 s
pe

c
qu

es
t'n

s

B
ob

S
tra

ng

A
C

po
si

tio
n

w
rit

e
us

er
's

gu
id

e

st
ud

y
m

is
si

on
sp

ec

su
pp

or
t

te
st

er
s

an
sw

er
ap

pl
ic

at
io

n
qu

es
tio

ns

co
nf

er
w

ith
 C

E
in

ve
st

-
ig

at
e

an
d

fix
er

ro
rs

co
nf

er
w

ith
 M

A

re
so

lv
e

G
S

S
 s

pe
c

qu
es

t'n
s

st
ud

y
G

S
S

sp
ec

s

co
nf

er
w

ith
 D

A

re
fe

r D
A

qu
es

t'n
s

to
 C

E

C
la

re
E

w
al

d

co
nf

ig
ur

e
ap

pl
'n ru

n,
de

bu
g

ap
pl

'n

cr
ea

te
/

ga
th

er
fil

es

U
IX

U
IX

 p
re

-
pr

oc
es

so
r

U
IX

pa
ra

m
ed

ito
r

G
S

S
C

O
N

re
or

de
r

re
se

qu
en

ce

w
rit

e
_a

pp
_

in
t

A
da

co
m

pi
le

r

fil
es lis
t

U
IX

lib
ra

ry

lin
ke

r st
rip

_
pa

rs
de

le
te

_p
ar

s
ca

t_
pa

rs

cr
ea

te
di

sp
la

y
D

B

cr
ea

te
co

nf
ig

.c
fg

cr
ea

te
lo

ad
m

od
ul

e cr
ea

te
op

er
'l

pa
ra

-
m

et
er

 D
B

cr
ea

te
co

nt
ro

l p
ar

a-
m

et
er

 D
B

.o
ve

rr
id

e
fil

e
ru

n
sc

rip
t

m
es

sa
ge

D
B in

pu
t

fil
es

co
nf

ig
.c

fg
lo

ad
m

od
ul

e
op

er
at

io
na

l
pa

ra
m

et
er

 D
B

co
nt

ro
l

pa
ra

m
et

er
 D

B

di
sp

la
y

D
B

U
se

r
po

si
tio

n

Jo
na

th
an

G
lic

km
an

st
ud

y
us

er
's

gu
id

e

cr
iti

qu
e

di
sp

la
ys

ru
n

ap
pl

'n

Te
st

R
ep

or
ts

Figure 7: Agent-Role-Position (ARP) Model for GSS Application Deployment Process

SEW21GSS.DOC 10 February 25, 1997

Mission
SpecGSS

Specs

Tasks

Products

.override
file

parameter
DBs

load
module

display
DB

run
script

user’s
guide

write
.override

file

create
parameter

DBscreate
load

module
components

create
display

DBwrite
run

script

write
user’s
guide

GSS
library

AND

gather
input
files

input
files

Debug

application
ready to test dependency

or object
problems

parameter
problems

GSS
spec

errors

GSS
code

errors

modify
code

modify
spec

acceptance
test

tested
application

display
problems

Figure 8: GSS Configuration Tasks

SEW21GSS.DOC 11 February 25, 1997

4. Recommendations for
Improvements to the GSS
Configuration Process
As is often the case, organizational and
technical details which were overlooked at the
project’s inception have come back in various
forms to threaten the full success of GSS.
Despite dramatic reductions in application
deployment cost and cycle time, the GSS
process has not won the full support of all
groups within the FDD. Although FDD
management mandated that software developers
and analysts would jointly design the GSS
process, the resulting process is today viewed
by many as the child of the software developers,
with less than full partnership from the analysts.

But this is more than merely a perception. The
current GSS process provides a good tool that
allows traditional software developers to
quickly configure flight dynamics software
applications. At the same time, however, the
current GSS process contains hurdles for
mission analysts, whom FDD management
would like to see making more direct use of the
GSS. This is because the GSS process and the
GSS documentation are inherently more
understandable to the GSS developers and
configurers than to the majority of FDD mission
analysts. As discussed later, the writing of the
initial mission specification in particular is a
task logically performed by mission analysts,
but at this time it requires a very technical level
of understanding of GSS. This level of
understanding is very difficult, and not
necessarily appropriate, for analysts to achieve.
As a result of this, relatively few FDD analysts
are currently involved in the GSS process.

As a result of our in-depth characterization of
the GSS configuration process, we discovered
several opportunities for improvement. Some of
these were synthesized from the comments of
several interviewees, while others came directly
from GSS developers, configurers, and testers.
Most relate to the problem described above (of
the barriers to use by analysts), but also would
improve the GSS process in other ways as well.

4.1 Storing application requirements
Several problems were cited that might be
ameliorated by storing the information

contained in the mission specification in
database form. First of all, it would facilitate
the reuse of requirements, which is common
from one application to another. Instead of
manually editing reused parts lists, display files,
parameter files, etc., database operations could
be used to modify these elements in the
database to help ensure consistency and avoid
errors.

Secondly, it has been stated as a goal of GSS
that eventually mission analysts should be able
to configure attitude software with little or no
intervention from GSS developers. There are
several barriers to achieving this goal, one of
which is that the writing of the mission
specification seems to require very specialized
skills. This is more than a user interface
problem, but using a database format rather than
a textual one may help.

Designing and maintaining a database for
mission and application requirements would not
be a simple task. It would require the
borrowing or hiring of a specialist in database
design, and a careful analysis of the needs that
the database is meant to satisfy. Because of
some of the points discussed above, a database
system with an adequate user interface is
especially important. Also, it would be helpful
to be able to integrate this database with other
databases used in the environment, e.g.
databases used to store new component
information.

4.2 Automatic generation of
configuration inputs
Another advantage of storing mission-specific
information in a database is that it would
facilitate the automatic generation of some of
the inputs to the GSS configuration. Generating
these files at present is tedious and time-
consuming. Writing the parts list in particular
has been described as a translation of the
mission specification from one notation to
another. Such a translation could be automated
if the mission specification were stored
electronically. Even better, the tools which
process the parts list could be rewritten so that
they access the database directly. As mentioned
later, such a database could also facilitate the
automatic generation of some parts of the user’s
guide. Also, it is conceivable that a database of
application requirements could also be used to

SEW21GSS.DOC 12 February 25, 1997

automatically generate the artifacts needed as
input to UIX (the user interface facility),
including the display files, the parameter files,
and the message files.

4.3 Support for learning GSS
As mentioned earlier, the specialized skills
required for writing mission specifications seem
to be a barrier to making GSS usable by mission
analysts. Making the mission spec database-
based rather than a textual document may help
somewhat. However, it does not solve the root
problem, which is that writing the mission
specification involves choosing the proper
configuration of GSS components for a
particular mission. This requires a level of
understanding of the GSS architecture that, up
until now, mission analysts have been unable or
unwilling to attain. This problem has both
organizational and technical aspects. Analysts
were not involved enough in the development of
GSS to give them any sense of ownership.
Thus, they are not highly motivated to take the
time necessary to learn to use GSS. Motivation
is further inhibited because, up until now, one
particular analyst has been willing to take on the
task of writing mission specifications for all
missions using GSS-based software. From a
technical point of view, the current
documentation on GSS (the GSS functional
specifications) are written by and for software
developers, not mission analysts. Their size and
technicality are daunting, to say the least, and
their organization is closely tied to the
organization of the software, which is not
necessarily the most logical from a user’s point
of view.

Thus, if GSS is to achieve the goal of being
fully usable by mission analysts, a serious effort
must be made to support learning. There is a
growing area of research and development in
software engineering in object-oriented
frameworks; for example, the SEL is studying
learning and reading techniques for frameworks
(Reference 4). GSS fits the definition of an O-O
framework, which is a domain-specific
repository of software classes which fit into a
cohesive architecture designed specifically for
the domain. To the best of our knowledge, GSS
is the only O-O framework specific to the flight
dynamics domain. However, much of what has
been learned about how to support the learning

of frameworks in other domains could be
applicable here. A number of strategies have
been used: cookbooks of application templates
and variations, example applications,
documented class hierarchies, etc. One
approach may be to develop a scenario-driven
overlay for the GSS functional specifications
which helps organize the specifications
according to user scenarios. Many of these
techniques could be useful in helping mission
analysts understand GSS sufficiently to begin
producing their own applications.

Designing learning support materials for GSS
would involve some experimentation to
determine which strategies are most helpful for
mission analysts. This would require some
investment of time and resources, and a serious
commitment to finding an appropriate solution
for the FDD domain and organization. It is also
crucial that the support materials are designed
for the most part by mission analysts, not
software developers. The involvement of
members of the analyst branch of FDD is
necessary to ensure that the materials, and GSS,
will be used in the future.

4.4 User’s Guide
User’s guides are required to be delivered to the
acceptance testers with the application, but they
are usually not completed until well after that
point. Testers usually do not have them
available in time to help with testing at all.
Instead, they rely for the most part on the
mission specification. However, the testers did
not seem to see this as a big problem. The
configurers, on the other hand, were not highly
motivated to write user’s guides and it was
treated as a necessary but low-priority chore. A
suggested improvement, then, is first to
determine what information is really useful in
the user’s guide (for both testers and eventual
users), then to investigate the possibility of
automatically generating parts of the user’s
guide from the mission specification (this might
be facilitated by the database suggested earlier),
and finally, if necessary, assign a qualified
technical writer to take on the writing of user’s
guides, as a task apart from configuration of the
application.

SEW21GSS.DOC 13 February 25, 1997

5. New Directions for Reuse
Study
Having characterized the GSS process, the
Reuse Study Team will concentrate in the
coming months on putting this process into
perspective, particularly with respect to its
changing technical and organizational context.
First of all, a number of technological advances
have taken place in software engineering since
the inception of GSS. These advances may be
relevant to how GSS is used in the future.
Furthermore, some developments in the
marketplace have produced alternative
approaches to reuse. Some of these may be
appropriately used instead of GSS in some
cases. The focus of the Reuse Study Team in
the near term will be to study which of these
emerging technologies could best be
incorporated into GSS and how, and under what
conditions GSS could be supplanted with
technology that is now available elsewhere. We
hope to evolve guidelines to be used by FDD
mission teams in choosing how best to produce
their software applications. In the sections
below we outline some of the issues on which
we will concentrate.

5.1 Evolving Technologies
Over the years that the GSS has been evolving,
many technologies have been evolving in the
marketplace. Some of these technologies
require a second look to see how they compare
to the GSS process today. It may be that the
GSS process could benefit from incorporating
some of these technologies.

5.1.1 Object Orientation
The GSS assets have been built from an object-
oriented perspective since its inception. In
many ways, the development of GSS was ahead
of its time, in that tools and techniques for
developing object-oriented systems were not
available when the GSS team needed them. For
example, the only object-oriented programming
languages that were available at the inception of
GSS were Ada83 and Smalltalk. Now, other
languages are available, such as C++ and
Ada95, along with supporting tools. We will
consider whether or not GSS suffered from not
having these languages and tools available, and
if any of the currently available languages and

tools might be useful in the future maintenance
of GSS. The software engineering field also
knows more now about such topics as object-
oriented design, testing, and maintenance. New
advances need to be examined to determine
their applicability to GSS.

5.1.2 Graphical User Interfaces
A User Interface and Executive (UIX) was
developed by a separate group of FDD
developers, in parallel with GSS, to provide
GUI capability for GSS-based applications. It
was decided to develop the GUI capability in-
house because, at that time, no appropriate GUI
packages were available in the commercial
market. That is no longer the case, so it is
appropriate to compare UIX to what is currently
available commercially, off-the-shelf (COTS).
It may be cost-effective to replace UIX with a
more user-friendly and robust GUI capability
developed elsewhere.

5.1.3 Other COTS Products
To support the GSS process, a number of tools
have been developed in-house, such as code
generators and editors. Most of these were
developed in an ad hoc (as needed, as time
permitted) manner. As the sophistication and
quality of currently available COTS products
has risen, we will investigate whether some
could be used to support the GSS process.
Some COTS products may even be appropriate
to replace the GSS process in some cases, as
discussed below.

5.2 Alternative Reuse Processes
For several years, the FDD has been slowly
developing more and more software on UNIX
workstations and weaning itself from its
traditional reliance on the IBM mainframe. In
the 1990s the FDD began to develop some of its
attitude support software for execution on UNIX
workstations rather than on the IBM mainframe
computer. For example, the AGSSs supporting
the three most recent operational satellites
(SOHO, SWAS, and XTE) ran partly on the
IBM mainframe and partly on the UNIX
workstations. Since the FORTRAN reuse
libraries resided only on the mainframe, the
subsystems based on the workstations had to be
written essentially from scratch. The GSS

SEW21GSS.DOC 14 February 25, 1997

strategic reuse library was designed entirely for
UNIX workstations, and would have been
useful for these subsystems, but it was not yet
available.

The movement from the mainframe to
workstations received a big impetus near the
end of fiscal year 1995, when FDD management
mandated that all software would be removed
from the IBM mainframe computers by the end
of fiscal year 1996. Consequently, much of the
institutional and mission-specific FORTRAN
code on the IBM mainframes needed to be
ported to workstations in a hurry.

It was initially decided that the mainframe
portions of the three most recent operational
AGSSs would be re-implemented on the
workstations by configuring them from the GSS
library. In order to continue supporting the
older legacy missions, however, an alternative
method was sought. Since these AGSSs were
built primarily from the FORTRAN reuse
libraries and ran entirely on the mainframe, it
was decided to port these libraries to the
workstations.

The FORTRAN reuse library used for
supporting non-spinning satellites was rehosted
by two mission analysts with considerable
support from some COTS products. FORTRAN
subroutines were edited using word processors
in order to conform to language restrictions of
the COTS products. The analysts followed
some process shortcuts and made liberal use of
certain language features provided by the COTS
products. During this rehost, the library
specifications were not rigorously followed and
were not updated to reflect the rehosted version
of the library. Another FORTRAN reuse
library, used to support spinning satellites, was
rehosted by software developers, using the same
COTS products. However, they closely
followed the library specifications and made
little attempt to take advantage of language
features unique to the COTS products.

The analysts who rehosted the first library
enjoyed using the COTS product and
demonstrated that the rehost could be done
cheaply and quickly. They found that they had
a lot of control over the process and were able,
because of their position, and/or the features of
the COTS products, to rapidly make changes to
the library during the rehost. As a result of their
favorable experience, the rehosted libraries,

together with their COTS umbrella, are now
viewed as an alternative process for supporting
new FDD missions as well as legacy missions.

In addition to these COTS products used for
rehosting attitude determination systems, there
are additional COTS products that can meet
various other parts of typical FDD mission
requirements. Some of these products are
already being reviewed and adopted to support
mission/maneuver planning and orbit/navigation
requirements for upcoming FDD missions.

 The Reuse Study Team has been charged with
studying the processes associated with the
maintenance and reuse of GSS, as well as those
that utilize the rehosted FORTRAN reuse
libraries in the development of mission support
software. Our work thus far has resulted in a
detailed understanding of the GSS configuration
process, described in the previous sections. As
well, we have come to some understanding of
the questions around which to focus this
comparison. These questions represent some
points of disagreement between COTS and GSS
proponents, some concerns raised by developers
and users of both approaches, and our own
analysis of interview data. These questions are
presented in the sections below.

5.2.1 User Interface
GSS uses a unified user interface called UIX for
all applications. UIX was developed in-house,
in parallel with GSS. This has caused some
problems in the testing of GSS, when errors turn
out to be UIX errors, not errors in the GSS code.
The use of UIX also requires the handling and
formatting of a number of large files
(parameters, displays, messages) in configuring
an application, which can be tedious and error-
prone.

Many COTS products provide their own GUI
capability, which is used to create a user
interface for each application. This interface is
not necessarily consistent.

How important is a unified user interface? How
difficult would it be to unify all the COTS-based
user interfaces?

SEW21GSS.DOC 15 February 25, 1997

5.2.2 Is Object-Oriented Technology
Superior?
The rehosted libraries are written in a procedural
language associated with the COTS products
used to support the rehost, in some cases from
scratch and in others converted from
FORTRAN code using a text editor. GSS
applications are mostly Ada83 with a small
amount of C code in some cases. Thus, the GSS
library is based on O-O concepts, whereas the
rehosted libraries, and their related applications,
are not. Prior to GSS, the SEL determined that
the use of Ada and O-O concepts in the FDD
resulted in smaller systems to perform more
functionality, while the FORTRAN reuse
libraries continued to grow in size.

Since they are based on FORTRAN, will the
rehosted reuse libraries continue to have the
same disadvantages (in particular, code growth)
as did the original FORTRAN libraries? If so,
this makes the FORTRAN libraries a less
attractive choice compared to O-O Ada reuse
libraries. Or is there some attribute of the COTS
products or the rehosting process which
mitigates these disadvantages?

5.2.3 Software Engineering Practices
The design of the rehosted libraries relies
heavily on the use of Global COMMON data.
The software elements of the resulting
applications are very tightly coupled to these
data structures. Also, as mentioned earlier, one
of the rehosted libraries has a code structure
which mirrors the original FORTRAN structure
very closely. Some developers also expressed
concern that the rehosting efforts did not follow
standard software engineering practices, such as
inspections. On the other hand, it could be
argued that rehosting does not warrant such a
high process overhead because it is based on
software that has been in operation for a long
time.

GSS, on the other hand, was developed in
accordance with more modern O-O concepts
and practices. A rigorous software engineering
process was followed, including design and
code inspections and rigorous testing.

Does the use of O-O concepts and software
engineering practices really make a difference in
this case? Or does the fact that the rehosted

software is based on such a time-tested library
make up for its deficiencies in this area?

5.2.4 Maintenance
Both FDD COTS users and GSS proponents
stress the advantages of their respective
approaches for maintenance. The systems based
on the rehosted libraries are argued to be easily
and quickly modified by someone who is
familiar with the domain, but not necessarily
with software development. That is, an analyst
does not have to rely on a software developer to
make every change required. Using a GSS-
based application, on the other hand, requires a
delay whenever a change is requested, often
until the next release of the GSS library. Thus
using the MATLAB-based rehosted libraries
provides users much quicker turnaround time on
modifications of the application than does using
GSS.

GSS proponents argue, on the other hand, that
any system will degrade over time if it is
allowed to be changed unsystematically by
users. Also, the structure of GSS was designed
to facilitate change without adding complexity
or large amounts of new code.

Is it more important for the user to have quick
turnaround on requested changes, or to manage
the evolving structure of the software? Is there
a reasonable compromise between the two? Do
the COTS-based applications become more
difficult to maintain the larger the application
is? Does the design of GSS really ensure that it
will not degrade over time?

Are developers and analysts using different time
scales (i.e., "quick" is 1 hr. for an analyst, but 1
day for a developer?)? Are developers and
analysts looking at different scopes of the
modification process (i.e., a developer looks at
how quick it is to change the code, whereas an
analyst looks at how long he has to wait to get
the revised)?

5.2.5 Performance
The applications based on the rehosted libraries
are interpreted, not compiled. In some cases the
source code was automatically converted to C,
then compiled. This compilation step improves
processing speed by a factor of two, but still
remains slower than traditional FDD

SEW21GSS.DOC 16 February 25, 1997

applications. How much slower are the COTS-
based applications than GSS-based applications,
and is this difference noticeable or important to
users?

5.2.6 Reliability
The AGSSs based on the rehosted libraries rely
heavily on the intrinsic capabilities of the
underlying COTS software for performing a
number of mathematical manipulations. Care
must be given to separate out errors in the
COTS software from errors in the custom
developed portions of the code. GSS
components, on the other hand, have exhibited
very low defect levels in acceptance testing. No
applications of either approach, however, have
been operational for long enough to assess field
reliability.

What assurances do we have of the reliability of
COTS products? How can it be assessed?

5.2.7 Portability
The applications based on the rehosted libraries
are all designed to be part of a single system
using the GUI provided by the COTS product
used in the rehost. This makes porting the
components relatively easy for any target
platform which supports that product. On the
other hand, there were some difficulties recently
in porting one of the GSS-based AGSSs from
the HP to the Sun workstations because UIX
(the user interface which GSS uses) had not
previously been ported to the Sun.

How important a criteria is portability? Can UIX
and GSS be made more portable in the future?

5.2.8 Documentation
During the porting of one of the FORTRAN
libraries, the original FORTRAN code structure
was followed very closely. Thus, the original
specifications for the FORTRAN software are
still valid for the rehosted version. However,
none of the advanced features of the COTS
products were used which would have allowed a
more efficient restructuring of the code. These
features were used heavily in the porting of the
other FORTRAN reuse library. As a
consequence, the code is more compact than it
was, but the original software specifications are
no longer valid and no new specifications have

been written. The analysts who were responsible
for porting the libraries believe that, to a certain
extent, a separate specifications document
becomes less necessary because in the
programming language used (associated with
the underlying COTS products), the equations
are written exactly as they would be written in
the specification.

The design of the GSS system is documented in
the GSS functional specifications, but these are
1600 pages long and, as mentioned earlier, are a
real barrier to understanding the system for its
eventual intended users, mission analysts.
However, they seem to provide all relevant
information necessary for maintaining the GSS
components, and are written from a software
developer’s point of view.

Is either type of documentation sufficient for
operation and maintenance purposes? Is the
COTS-based code really self-documenting
enough for maintainers to correctly make
modifications? Can users of GSS components
and applications be taught to use the GSS
specifications effectively?

6. Conclusions
This paper presents the interim results from the
SEL’s Reuse Study. The team conducting this
study has, over the past few months, been
studying the GSS domain asset library and
architecture, and the various processes
associated with it. In particular, we have
characterized the process used to configure
GSS-based attitude ground support systems to
support FDD missions. To do this, we built
detailed models of the tasks involved, the
people who perform these tasks, and the
interdependencies and information flows
between these people. These models were
based on information gleaned from numerous
interviews with people involved in this process
at various levels. We also analyzed effort data
in order to determine the cost savings in moving
from actual development of AGSSs to support
each mission (which was necessary before GSS
was available) to configuring AGSS software
from the domain library.

While characterizing the GSS process, we also
became aware of several interesting factors
which affect the successful continued use of
GSS. Many of these issues fall under the

SEW21GSS.DOC 17 February 25, 1997

subject of the evolving technologies, which
were not available at the inception of GSS, but
are now. Some of these technologies could be
incorporated into the GSS process, thus making
the whole asset library more usable. Other
technologies are being considered as an
alternative to the GSS process altogether. In
this paper, we outline some of issues we will be
considering in our continued study of GSS and
the impact of evolving technologies.

7. References
1. Yu, E., "An Organizational Modeling
Framework for Multi-Perspective Information
System Design," [Conference currently
unknown], 1993(?).

2. McGarry, F., R. Pajerski, G. Page, S.
Waligora, V. Basili, M. Zelkowitz, An Overview
of the Software Engineering Laboratory,
Software Engineering Laboratory, SEL-94-005,
December 1994

3. Waligora, S., J. Bailey, M. Stark, Impact of
Ada and Object-Oriented Design in the Flight
Dynamics Division at Goddard Space Flight
Center, Software Engineering Laboratory, SEL-
95-001, March 1995

4. Basili, V., G. Caleiera, F. Lanubile, F. Shull,
"Studies on Reading Techniques," Proceedings
of the Twenty-First Annual Software
Engineering Workshop, Greenbelt, MD,
December 1996

8. Other Sources
Boland, D., L. Cisney, S. Godfrey, S. Green, T.
Gwynn, J. Langston, Upper Atmosphere
Research Satellite (UARS) Attitude Ground
Support System (AGSS) Software Development
History, Flight Dynamics Division/GSFC,
FDD/552-90/092, November 1990

Briand, L., W. L. Melo, C. Seaman, V. Basili,
"Characterizing and Assessing a Large-Scale
Software Maintenance Organization," ICSE'95,
Seattle, WA, 1995.

Brown, C., R. Coon, J. Langston, D. Spiegel, T.
Wood, Internatinal Solar Terrestrial Physics
(ISTP) Program/Global Geospace Science
(GGS) Project, WIND and POLAR Spacecraft
Flight Dynamics Support System (FDSS)
Software Development History, Flight

Dynamics Division/GSFC, 552-FDD-
93/008R0UD0, March 1993

Condon, S., M. Regardie, M. Stark, S.
Waligora, Cost and Schedule Estimation Study
Report, Software Engineering Laboratory, SEL-
93-002, November 1993

Coon, R., J. Golder, S. Green, J. O'Neill,
Internatinal Solar Terrestrial Physics
(ISTP)/Collaborative SolarTerrestrial Research
(COSTR) Initiative, Solar and Heliospheric
Observatory (SOHO) Mission Attitude Ground
Support System (AGSS) Software Development
History, Flight Dynamics Division/GSFC, 552-
FDD-95/026R0UD0, November 1995

FDD analysts, developers, and testers,
interviews with

FDD/GSFC, MTASS FDSS Overview,
Revision 1, Update 1, October 1995

Green, D., T. Gwynn, G. Moschoglou, M.
Regardie, L. Lindrose, A. Calder, S. Valett, X-
Ray Timing Explorer (XTE) Submillimeter Wave
Astronomy Satellite (SWAS) Utilities Software
Development History, Flight Dynamics
Division/GSFC, 552-FDD-96/007R0UD0,
October 1996

SEW21GSS.DOC 18 February 25, 1997

Gwynn, T., M. Mills, M. Regardie, T. Rogers,
Submillimeter Wave Astronomy Satellite
(SWAS)/X-Ray Timing Explorer (XTE) Attitude
Ground Support System (AGSS) Software
Development History, Flight Dynamics
Division/GSFC, 552-FDD-95/024R0UD0,
September 1995

Kulp, D., P. Myers, M. Regardie, Total Ozone
Mapping Spectrometer-Earth Probe (TOMS-
EP) Attitude Ground Support System (AGSS)
Software Development History, Flight
Dynamics Division/GSFC, 552-FDD-
94/031R0UD0, September 1994

MathWorks Web Site,
http://www.mathworks.com/ and
http://www.mathworks.com/matlab.html

NASA/GSFC Software Engineering Laboratory
(SEL), The Generalized Support Software
(GSS): A Description of Its Current Software
Development Process, February 1996

Software Engineering Laboratory: data from its
database

Spiegel, D., J. Doland, Fast Auroral Snapshot
Explorer (FAST) Attitude Ground Support
System (AGSS) Software Developement History,
Flight Dynamics Division/GSFC, 552-FDD-
94/040R0UD0, September 1994

